[1] Honglin Wu, Peng Huang, Min Zhang, Wenlong Tang, and Xinyu Yu. CMTFNet: CNN and Multiscale Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023 (SCI-1區(qū)TOP-高被引). [2] Honglin Wu, Zhaobin Zeng, Peng Huan, et al. CCTNet: CNN and Cross-Shaped Transformer Hybrid Network for Remote Sensing Image Semantic Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024 (SCI-2區(qū)TOP). [3] Honglin Wu Min Zhang, Peng Huang, et al. CMLFormer: CNN and Multi-scale Local-context Transformer network for remote sensing images semantic segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024 (SCI-2區(qū)TOP). [4] Honglin Wu, Peng Huang, Min Zhang, and Wenlong Tang. CTFNet: CNN-Transformer Fusion Network forRemote Sensing Image Semantic Segmentation. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023 (SCI-2區(qū)). [5] Honglin Wu, Xinyu Yu, Zhaobin Zeng. SSBFNet: a spectral-spatial fusion with BiFormer network for hyperspectral image classification.The Visual Computer,2025 (SCI-3區(qū)). [6] 吳宏林,陳穩(wěn),湯輝.結(jié)合反卷積和擴(kuò)張卷積的信道估計(jì)算法. 信號(hào)處理, 2021. [7] Honglin Wu, Shuzhen Zhao, Chaoquan Lu, Wen Chen. Self-attention network with joint loss for remote sensing image scene classification. IEEE Access, 8:210347-210359, 2020. [8] Honglin Wu, Shuzhen Zhao, Jianming Zhang, Chaoquan Lu. Remote sensing image sharpening by integrating multispectral image super-resolution and convolutional sparse representation fusion. IEEE Access, 7:46562-46574, 2019. [9] 吳宏林, 趙淑珍, 王建新, 張建明, 喻小虎. 融合內(nèi)外特征的圖像超分辨率算法. 紅外技術(shù), 41(9):843-851, 2019. [10] 王建新, 吳宏林, 張建明等. 殘差字典學(xué)習(xí)的快速圖像超分辨率算法. 計(jì)算機(jī)科學(xué)與探索, 2018, v.12, No.119(08):119-128. |