您現(xiàn)在的位置: 學(xué)院首頁 > 研究生教育 > 導(dǎo)師隊(duì)伍 > 正文



長(zhǎng)沙理工大學(xué)水利與環(huán)境工程學(xué)研究生導(dǎo)師基本信息表

、個(gè)人基本信息:

    :陳 宏

     


20FB


出生年月:1983.4

技術(shù)職稱:教授、博導(dǎo)、JSPS研究員

畢業(yè)院校:湖南大學(xué)

學(xué)歷(學(xué)位:博士(后)

所在學(xué)科水利市政環(huán)保

研究方向水處理、水環(huán)境治理、環(huán)境生物技術(shù)

、教育背景:

2016.10~2019.10

日本東北大學(xué)

JSPS海外特別研究員/外國(guó)人研究員

2012.6~2014.6

中國(guó)科學(xué)院生態(tài)環(huán)境研究中心

博士后

2007.9~2010.6

湖南大學(xué)

博士

2004.9~2007.6

湖南大學(xué)

碩士

、目前研究領(lǐng)域:

1.       環(huán)境厭氧生物處理(AD、Anammox、AnMBR)基本理論、技術(shù)應(yīng)用及數(shù)學(xué)模型

2.       城市雨水資源利用與面源污染控制(海綿城市建設(shè))基本理論與技術(shù)應(yīng)用

3.       水源地水安全評(píng)價(jià)基本理論與方法

4.       洞庭湖水環(huán)境治理與水生態(tài)修復(fù)基本理論與技術(shù)

5.       變化條件下自然濕地微生物驅(qū)動(dòng)氮轉(zhuǎn)化基本理論

、近期在研或已完成的主要課題:

1.       基于生物控制的環(huán)境污染治理技術(shù). 長(zhǎng)沙市知識(shí)產(chǎn)權(quán)公共項(xiàng)目駐長(zhǎng)高校高價(jià)值專利組合培育項(xiàng)目. 主持. 在研.

2.       碳減排背景下高濃度有機(jī)廢水處理與資源能源回收新技術(shù)研究. 2022SK2091. 湖南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目. 主持. 在研.

3.       市政污水處理主流程中自養(yǎng)生物脫氮長(zhǎng)期穩(wěn)定運(yùn)行性能及過程機(jī)制. 20A002. 湖南省教育廳科學(xué)研究項(xiàng)目重點(diǎn)項(xiàng)目. 主持. 已結(jié)題.

4.        主流部分亞硝化-厭氧氨氧化工藝長(zhǎng)期運(yùn)行穩(wěn)定性的關(guān)鍵因子影響及調(diào)控方法. 2020JJ4602. 湖南省自然科學(xué)基金面上項(xiàng)目. 主持. 已結(jié)題.

5.       2018年度湖南省普通高校青年骨干教師培養(yǎng)對(duì)象. 已結(jié)題.

6.       畜禽糞便協(xié)同農(nóng)作物秸稈厭氧消化產(chǎn)氫烷關(guān)鍵技術(shù)研發(fā). 湖南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目. 2017SK2361. 主持. 已結(jié)題.

7.       嫌気性膜分離法と一槽型アンナモックス法による窒素含有化學(xué)産業(yè)排水の処理. 日本JSPS外國(guó)人研究課題(16F16758). 主持. 已結(jié)題.

8.       國(guó)家自然科學(xué)基金青年項(xiàng)目. 管式生物過濾器內(nèi)生物膜蓄積的生物控制方法及控制機(jī)制(51308068). 主持. 已結(jié)題.

、近期已申請(qǐng)的主要專利(第一發(fā)明人)

1.       一種干散貨碼頭污染徑流的收集凈化與回用工藝. 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202110839914.7. 申請(qǐng)日: 2021-07-22. 公開號(hào): CN113582444A. 授權(quán)公告日: 2022-12-2.

2.       一種液體散貨碼頭污染徑流的收集凈化與回用工藝. 申請(qǐng)?zhí)? 202110828728.3. 申請(qǐng)日: 2021-07-22.

3.       一種碼頭雨水的集蓄凈化與回用工藝. 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202110828604.5. 申請(qǐng)日: 2021-07-22.

4.       一種干散貨碼頭污染徑流的收集凈化與回用系統(tǒng). 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202110828720.7. 申請(qǐng)日: 2021-07-22.

5.       一種海綿混凝土的制備與回用方法. 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202111064671.0. 申請(qǐng)日: 2021-09-09.

6.       一種液體散貨碼頭污染徑流的收集凈化與回用系統(tǒng). 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202110828724.5. 申請(qǐng)日: 2021-07-22.

7.       一種景觀湖水原位循環(huán)處理工藝. 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202110828723.0. 申請(qǐng)日: 2021-07-22.

8.       一種景觀湖水原位循環(huán)處理系統(tǒng). 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202110828738.7. 申請(qǐng)日: 2021-07-22.

9.       一種碼頭雨水的集蓄凈化與回用系統(tǒng). 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 202110828603.0. 申請(qǐng)日: 2021-07-22.

10.       一種污水處理的高效生物脫氮裝置: 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 201910990754.9. 申請(qǐng)日: 2019-10-18.

11.       一種固定化復(fù)合菌群材料及其制備方法: 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 201911000421.3. 申請(qǐng)日: 2019-10-18. 授權(quán)公告日: 2022-5-31.

12.       一種污水處理的高效生物脫氮工藝: 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 201910990818.5. 申請(qǐng)日: 2019-10-18. 授權(quán)公告日: 2022-5-17.

13.       一種淡水水產(chǎn)養(yǎng)殖廢水的原位處理方法: 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 201910990795.8. 申請(qǐng)日: 2019-10-18.

14.       一種農(nóng)田退水的原位處理方法: 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 201910990821.7. 申請(qǐng)日: 2019-10-18. 授權(quán)公告日: 2022-2-8.

15.       一種污水處理的高效生物脫氮裝置: 中國(guó)實(shí)用新型專利. 專利號(hào): ZL201921747578.8. 授權(quán)日: 2020-07-10.

16.       一種生物膜強(qiáng)化脫氮處理工藝: 中國(guó)發(fā)明專利. 專利號(hào): ZL 2017114293088. 授權(quán)日: 2021-04-27.

17.       一種生物膜強(qiáng)化脫氮裝置: 中國(guó)發(fā)明專利. 申請(qǐng)?zhí)? 2017114295740. 申請(qǐng)日: 2017-12-26.

18.       一種生物脫氮一體化處理工藝: 中國(guó)發(fā)明專利. 專利號(hào): ZL 2017114300931. 授權(quán)日: 2021-04-27.

19.       一種豬場(chǎng)廢液處理工藝: 中國(guó)發(fā)明專利. 專利號(hào): ZL 2017114300946. 授權(quán)日: 2021-04-27.

20.       一種生物脫氮一體化裝置: 中國(guó)發(fā)明專利. 專利號(hào): ZL 2017114301065. 授權(quán)日: 2019-01-04.

21.       一種生物膜強(qiáng)化脫氮裝置: 中國(guó)實(shí)用新型專利. 專利號(hào): ZL 2017218432418. 申請(qǐng)日: 2017-12-26. 授權(quán)日: 2019-01-04.

22.       一種生物脫氮一體化裝置: 中國(guó)實(shí)用新型專利. 專利號(hào): ZL 201721843311X. 申請(qǐng)日: 2017-12-26. 授權(quán)日: 2019-01-04.

23.       一種水質(zhì)凈化多功能帷幕: 中國(guó)發(fā)明專利. 專利號(hào): ZL 201510604961.8. 申請(qǐng)日: 2015-9-22. 授權(quán)日: 2018-5-15.

24.       一種直立浸沒式水質(zhì)原位凈化帷屏: 中國(guó)發(fā)明專利. 專利號(hào): ZL 201510604934.0. 授權(quán)日: 2018-6-29.

、近期發(fā)表的主要學(xué)術(shù)論文(第一或通訊作者)

1.       Intensifying single-stage denitrogen by a dissolved oxygen-differentiated airlift internal circulation reactor under organic matter stress: nitrogen removal pathways and microbial interactions. Water Research, 2023, 241, 120120. https://doi.org/10.1016/j.watres.2023.120120 

2.       Insights into the rapid start-up nitrogen removal performance of an inoculated municipal sludge system: a high-height-diameter-ratio airlift inner-circulation partition bioreactor based on CFD analysis. Environmental Research, 2023, 243, 117838. https://doi.org/10.1016/j.envres.2023.117838

3.       Swine wastewater treatment using combined up-flow anaerobic sludge blanket and anaerobic membrane bioreactor: Performance and microbial community diversity. Bioresource Technology, 2023, 373, 128606. https://doi.org/10.1016/j.biortech.2023.128606

4.       Effects of temperature and total solid content on biohydrogen production from semi-continuous dark fermentation of rice straw. Chemosphere, 2022, 286(1), 131655. https://doi.org/10.1016/j.chemosphere.2021.131655

5.       Key factors governing the performance and microbial community of one-stage partial nitritation and anammox system with bio-carriers and airlift circulation. Bioresource Technology, 2021, 324: 124668. https://doi.org/10.1016/j.biortech.2021.124668

6.       Insights into the synergy between functional microbes and dissolved oxygen partition in the single-stage partial nitritation-anammox granules system. Bioresource Technology, 2021, 126364. https://doi.org/10.1016/j.biortech.2021.126364

7.       A Critical Review on Microbial Ecology in the Novel Biological Nitrogen Removal Process: Dynamic Balance of Complex Functional Microbes for Nitrogen Removal. Science of the Total Environment, 2023, 857, 159462. http://dx.doi.org/10.1016/j.scitotenv.2022.159462

8.       Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. Chemosphere, 2021, 278, 130436. https://doi.org/10.1016/j.chemosphere.2021.130436

9.       Roof runoff pollution control with operating time based on a field-scale assembled bioretention facility: Performance and microbial community dynamics. Journal of Water Process Engineering, 2023.

10.       High biomass yields of Chlorellar protinosa with efficient nitrogen removal from secondary effluent in a membrane photobioreactor. Journal of Environmental Sciences, 2023. https://doi.org/10.1016/j.jes.2023.10.036

11.       Metal-organic framework membranes with varying metal ions for enhanced water and wastewater treatment: A critical review. Journal of Environmental Chemical Engineering, 2023, 11, 111468. https://doi.org/10.1016/j.jece.2023.111468

12.       Complex inhibitions on anaerobic degradation of monosodium glutamate from wastewater under low COD/sulfate ratios. International Biodeterioration & Biodegradation, 2023, 177, 105526. https://doi.org/10.1016/j.ibiod.2022.105526

13.       Insight into rapidly recovering the autotrophic nitrogen removal performance of single-stage partial nitritation-anammox systems: reconstructing granular sludge and its functional microbe synergy. Bioresource Technology, 2022, 361, 127750. https://doi.org/10.1016/j.biortech.2022.127750

14.       Can digestate recirculation promote biohythane production from two-stage co-digestion of rice straw and pig manure? Journal of Environmental Management, 2022, 319, 115655. https://doi.org/10.1016/j.jenvman.2022.115655

15.       Insights into regulating influent nitrogen load to restore autotrophic nitrogen removal performance of a two-stage reactor. Journal of Environmental Chemical Engineering, 2022, 10(4): 108168. https://doi.org/10.1016/j.jece.2022.108168

16.       Revealing the effect of biofilm formation in partial nitritation-anammox systems: Start-up, performance stability, and recovery. Bioresource Technology, 2022, 357, 127379. https://doi.org/10.1016/j.biortech.2022.127379


17.        Dual inner circulation and multi-partition driving single-stage autotrophic nitrogen removal in a bioreactor. Bioresource Technology, 2022, 355, 127261. https://doi.org/10.1016/j.biortech.2022.127261

18.       Insights into a novel nitrogen removal process based on simultaneous anammox and denitrification (SAD) following nitritation with in-situ NOB elimination. Journal of Environmental Sciences, 2023, 125, 160-170. https://doi.org/10.1016/j.jes.2022.01.019

19.       Enhanced removal of heavy metals and metalloids in constructed wetlands: A review on approaches, key parameters, and main mechanisms. Science of the Total Environment, 2022, 821, 153516. https://doi.org/10.1016/j.scitotenv.2022.153516

20.       Reutilization of manganese enriched biochar derived from Phytolacca acinosa Roxb. residue after phytoremediation for lead and tetracycline removal. Bioresource Technology, 2021, 345, 126546. https://doi.org/10.1016/j.biortech.2021.126546

21.       A review on the removal of heavy metals and metalloids by constructed wetlands: Bibliometric, removal pathways, and key factors. World Journal of Microbiology and Biotechnology, 2021, 37, 157. https://doi.org/10.1007/s11274-021-03123-1

22.       Enhancing autotrophic nitrogen removal with a novel dissolved oxygen-differentiated airlift internal circulation reactor: Long-term operational performance and microbial characteristics. Journal of Environmental Management, 2021, 296, 113271. https://doi.org/10.1016/j.jenvman.2021.113271

23.       Reduced graphene oxide modified Z-scheme AgI/Bi2MoO6 heterojunctions with boosted photocatalytic activity for water treatment originated from the efficient charge pairs partition and migration. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15180-y

24.       Performance promotion and its mechanism for n-hexane removal in a lab-scale biotrickling filter with reticular polyurethane sponge under intermittent spraying mode. Process Safety and Environmental Protection, 2021, 152, 654–662. https://doi.org/10.1016/j.psep.2021.06.029

25.       Long-term stability of partial nitritation-anammox process for low-strength ammonia wastewater treatment: Performance and microbial dynamics under operational parameter variations. Bioresource Technology, 2021, 330, 124961. https://doi.org/10.1016/j.biortech.2021.124961

26.       Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation. Chemosphere, 274, 129787. https://doi.org/10.1016/j.chemosphere.2021.129787

27.       Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure. Bioresource Technology, 2021, 320(A): 124303. https://doi.org/10.1016/j.biortech.2020.124303

28.       Enhanced Cd2+ and Zn2+ removal from heavy metal wastewater in constructed wetlands with resistant microorganisms. Bioresource Technology, 2020, 316, 123898: 1-11. https://doi.org/10.1016/j.biortech.2020.123898

29.       Dark co-fermentation of rice straw and pig manure for biohydrogen production: Effects of different inoculum pretreatments and substrate mixing ratio. Environmental Technology, 2020, 1770340: 1-11. https://doi.org/10.1080/09593330.2020.1770340

30.       Tubular biofilter treatment of isobutanol emissions under various organic loading rates. Environment Protection Engineering, 2020, 46(1): 15-29. https://doi.org/10.5277/epe200102

31.       Anaerobic treatment of glutamate-rich wastewater in a continuous UASB reactor: Effect of hydraulic retention time and methanogenic degradation pathway. Chemosphere, 2020, 245, 125672. https://doi.org/10.1016/j.chemosphere.2019.125672

32.       Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance, and enhancement mechanism. Renewable Energy, 2020, 147, 2409-2416. https://doi.org/10.1016/j.renene.2019.10.051

33.       Performance and microbial community variations of a Upflow Anaerobic Sludge Blanket (UASB) reactor for treating monosodium glutamate wastewater: Effects of organic loading rate. Journal of Environmental Management, 2020, 253, 109691. https://doi.org/10.1016/j.jenvman.2019.109691

34.       Competitive dynamics of anaerobes during long-term biological sulfate process in a UASB reactor. Bioresource Technology, 2019, 280, 173-182. https://doi.org/10.1016/j.biortech.2019.02.023

35.       Wet flue gas desulfurization wastewater treatment with reclaimed water treatment plant sludge: a case study. Water Science and Technology, 2018, 78 (11): 2392-2403. https://doi.org/10.2166/wst.2018.525

36.       Long-term MIBK removal in a tubular biofilter: Effects of organic loading rates and gas empty bed residence times. Process Safety and Environmental Protection, 2018, 119: 87-95. https://doi.org/10.1016/j.psep.2018.07.019

37. 生物電化學(xué)耦合厭氧氨氧化強(qiáng)化脫氮及其微生物群落特征. 生物工程學(xué)報(bào), 2023, 39(7): 2719-2729.

38.       長(zhǎng)沙市典型屋面初期雨水徑流污染特征及生物控制中試研究. 水資源與水工程學(xué)報(bào), 2023, 34(2): 91-98.

39.       新型單級(jí)自養(yǎng)脫氮系統(tǒng)關(guān)鍵因子優(yōu)化研究. 長(zhǎng)沙理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 19(2): 28-36.

40.       蒽醌法制備雙氧水的廢水治理工程設(shè)計(jì)及運(yùn)行. 中國(guó)給水排水, 2022, 38(4): 98-102.  

41.       溶解氧分區(qū)強(qiáng)化一段式自養(yǎng)工藝的脫氮性能及反應(yīng)器中的微生物特征. 環(huán)境工程學(xué)報(bào), 2022, 16(3): 798-805.

42.       氮負(fù)荷提升方式強(qiáng)化ANAMMOX反應(yīng)器的性能研究. 中國(guó)給水排水, 2021,37(9): 90-96.

43.       有機(jī)廢棄物厭氧共發(fā)酵制氫研究進(jìn)展. 化工進(jìn)展, 2021, 40(1): 440-450.

44.       氨氮和硫酸鹽對(duì)谷氨酸厭氧生物降解性能的抑制及機(jī)理. 中國(guó)環(huán)境科學(xué), 2020, (10): 4342-4347.

45.       淡水濕地生態(tài)系統(tǒng)中微生物驅(qū)動(dòng)氮轉(zhuǎn)化過程研究進(jìn)展. 水利學(xué)報(bào), 2020, 51(2): 158-168.

46.       干挖法清淤對(duì)南漢垸內(nèi)溝渠沉積物中氮形態(tài)和氨氮擴(kuò)散通量的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019, 38(1): 2826-2834.


、所獲學(xué)術(shù)榮譽(yù)及學(xué)術(shù)影響:

1.       廢水厭氧資源化的菌間高效協(xié)同關(guān)鍵技術(shù)與應(yīng)用. 2022年陜西省科學(xué)技術(shù)進(jìn)步獎(jiǎng)一等獎(jiǎng). (個(gè)人排5

2.        洞庭湖垸內(nèi)溝渠綜合治理與水環(huán)境關(guān)系研究. 2018年湖南省水利水電科技進(jìn)步獎(jiǎng)二等獎(jiǎng). (個(gè)人排4)

3.       洞庭湖生態(tài)基流及生態(tài)水位特征研究. 2016年湖南省水利水電科學(xué)技術(shù)進(jìn)步獎(jiǎng)二等獎(jiǎng).(個(gè)人排8)

4.       教育部本科教育教學(xué)審核評(píng)估專家;國(guó)際水協(xié)會(huì)(IWA)會(huì)員,國(guó)際濕地學(xué)會(huì)(SWS)會(huì)員,日本水環(huán)境學(xué)會(huì)會(huì)員,中國(guó)環(huán)境科學(xué)學(xué)會(huì)高級(jí)會(huì)員,中國(guó)生態(tài)學(xué)會(huì)濕地生態(tài)專業(yè)委員會(huì)會(huì)員等

5.       國(guó)家注冊(cè)環(huán)保工程師資格

6.       指導(dǎo)學(xué)生獲得全校首屆碩士研究生卓越獎(jiǎng)(楊恩喆,2023)、研究生暑期實(shí)踐活動(dòng)校級(jí)結(jié)項(xiàng)一等獎(jiǎng)(范慶元,2016)、省級(jí)和校級(jí)優(yōu)秀碩士學(xué)位論文獎(jiǎng)(王泓,2023;王祎昱,2019)、研究生科研創(chuàng)新項(xiàng)目(羅鑫,2022;黎雪,2022;袁吉成,2022;楊雙林,2022;羅楨,2021;謝萊,2021;陽滔,2021;劉珂,2020;黃蓉,2020;涂智,2020;王泓,2019;胡穎冰,2019;范慶元,2017)、本科生創(chuàng)新實(shí)驗(yàn)項(xiàng)目(許榮華,2020;劉達(dá)山,2019;王博洋,2017;肖典,2016;陳桐清,2014;劉青芝,2011)、湖南省水資源大賽(王泓,2018;劉達(dá)山,2018;彭靚,2016)、研究生國(guó)家獎(jiǎng)學(xué)金(楊恩喆,2022;王泓,2020;韋燕霄,2018)及優(yōu)秀研究生等多個(gè)榮譽(yù)稱號(hào)


熱烈歡迎給排水科學(xué)與工程、環(huán)境工程、生物工程、化學(xué)工程、應(yīng)用化學(xué)、輕化工程、材料科學(xué)與工程、生態(tài)學(xué)等相關(guān)專業(yè)的優(yōu)秀本科畢業(yè)生報(bào)考并加入我們。本團(tuán)隊(duì)科研氛圍濃厚,學(xué)術(shù)交流豐富多彩,尊重研究興趣,鼓勵(lì)學(xué)科交叉與融合和(出國(guó))讀博深造。在研期間可共享湖南大學(xué)、日本東北大學(xué)、中國(guó)科學(xué)院生態(tài)環(huán)境研究中心、中國(guó)環(huán)境科學(xué)研究院等國(guó)內(nèi)外學(xué)術(shù)資源。


8、聯(lián)系電話:13873128135     聯(lián)系郵箱:chenh@csust.edu.cn







上一條:趙利平
下一條:曹周紅

黄色在线网站wwwwww,亚洲一区免费观看,疯狂丑小鸭2,特黄毛片官网免费看