報告承辦單位: 數(shù)學(xué)與統(tǒng)計學(xué)院
報告題目: 時滯微分方程傳染病模型論證傳染力的新視角
報告人姓名: Zou Xingfu(鄒幸福)
報告人所在單位: 加拿大西安大略大學(xué)
報告人職稱: 教授、博士生導(dǎo)師
報告時間: 2023年11月2日 星期四 下午4:00-6:00
報告地點: 理科樓A419
報告人簡介:鄒幸福教授分別在中山大學(xué),湖南大學(xué)和加拿大約克大學(xué)獲得學(xué)士,碩士和博士學(xué)位,并在加拿大維多利亞大學(xué)和美國喬治亞理工學(xué)院從事過博士后研究工作。曾任教于加拿大紐芬蘭紀(jì)念大學(xué),現(xiàn)為加拿大西安大略大學(xué)數(shù)學(xué)系教授。研究興趣為微分方程和動力系統(tǒng)的理論及應(yīng)用,特別是反應(yīng)擴散方程、常泛函微分方程及偏泛函微分方程及其在生物領(lǐng)域的應(yīng)用。
報告摘要:In this talk, we will revisit the notion of infection force from a new angle which can offer a new perspective to motivate and justify some infection force functions. Our approach not only can explain many existing infection force functions in the literature, it can also motivate new forms of infection force functions, particularly infection forces depending on disease surveillance of the past. As a demonstration, we propose an SIRS model with delay. We comprehensively investigate the disease dynamics represented by this model, particularly focusing on the local bifurcation caused by the delay and another parameter that reflects the weight of the past epidemics in the infection force. We confirm Hopf bifurcations both theoretically and numerically. The results show that depending on how recent the disease surveillance data are, their assigned weight may have a different impact on disease control measures.