長沙理工大學(xué)學(xué)術(shù)活動預(yù)告
報告承辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院
報告內(nèi)容: Medical Applications of Improved Super Asymmetric Support Vector Machine
Recently deep learning algorithms have achieved great success in the field of computer vision. The popularization of artificial intelligence based on deep learning in various fields requires a large number of manually labeled data. However, in medical field, it is really expensive and difficult to gather massive accurate annotations labeled by experts with rich clinical experience. This talk introduces a method called Super Asymmetric Support Vector Machine (SASVM) to solve the problem of poor accuracy and consistency of medical data. In this method, positive examples are augmented with some non-classical data whose annotations may be insufficient or inconsistent. Furthermore, the methodology could be applied to multi-instances learning.
報告人姓名: 李明
報告人所在單位:太原理工大學(xué)
報告人職稱/職務(wù)及學(xué)術(shù)頭銜:教授
報告時間: 2019年12月28日15:00-16:00
報告地點:理科樓A-419
報告人簡介: 李明,教授,博士生導(dǎo)師,2010年畢業(yè)于香港城市大學(xué),獲博士學(xué)位?,F(xiàn)任太原理工大學(xué)黨委常委、副校長。山西省高等學(xué)校優(yōu)秀青年學(xué)術(shù)帶頭人、山西省優(yōu)秀科技工作者、山西省131領(lǐng)軍人才、山西省青年拔尖人才。擔(dān)任國際SCI期刊International Journal of Computational Method編委,山西省工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會副理事長。長期致力于計算數(shù)學(xué)、無網(wǎng)格計算方法和醫(yī)療大數(shù)據(jù)等研究。已發(fā)表SCI論文70余篇,出版英文專著1部。主持國家自然科學(xué)基金項目3項,中國-斯洛文尼亞政府間科技合作項目1項、省部級項目7項、教改項目1項。