導(dǎo)師隊(duì)伍

張勇講師
2019年09月02日 | 點(diǎn)擊次數(shù):

 

 

數(shù)學(xué)與統(tǒng)計(jì)學(xué)院研究生導(dǎo)師信息

一、電子照片

二、基本情況

姓名:張勇

性別:男

學(xué)歷學(xué)位:博士研究生

職稱(chēng):講師

職務(wù):無(wú)

學(xué)術(shù)兼職:無(wú)

研究方向:數(shù)論

電子郵箱:zhangyongzju@163.com

三、專(zhuān)業(yè)教學(xué)及教學(xué)成果

主要承擔(dān)《抽象代數(shù)》、《初等數(shù)論》、《線性代數(shù)》、《高等數(shù)學(xué)》課程教學(xué);

四、研究方向及研究團(tuán)隊(duì)

主要從事數(shù)論科研工作;

五、 科研成果

[1] Yong Zhang and Tianxin Cai, $n$-Tuples of positive integers with the same second elementary symmetric function value and the same product, Journal of Number Theory 132 (2012), 2065--2074. SCI  4區(qū))

[2] Yong Zhang and Tianxin Cai, $n$-Tuples of positive integers with the same sum and the same product, Mathematics of Computation 82 (2013), 617--623. SCI  2區(qū))

[3] Yong Zhang and Tianxin Cai, On the Diophantine equation $f(x)f(y)=f(z^2)$, Publicationes Mathematicae Debrecen 82 (2013), 31--41. SCI  4區(qū))

[4] Yong Zhang and Tianxin Cai, A note on the Diophantine equation $f(x)f(y)=f(z^2)$, Periodica Mathematica Hungarica 70 (2015), 209--215. SCI  4區(qū))

[5] Tianxin Cai, Deyi Chen and Yong Zhang, Perfect numbers and Fibonacci primes (I), International Journal of Number Theory 11 (2015), 159--169. SCI  4區(qū))

[6] Tianxin Cai, Deyi Chen and Yong Zhang, A new generalization of Fermat's Last Theorem, Journal of Number Theory 149 (2015), 33--45. SCI  4區(qū))

[7] Tianxin Cai, Yong Zhang and Zhongyan Shen, Figurate primes and Hilbert's 8th problem, Number theory, 65--74, Ser. Number Theory Appl., 11, World Sci. Publ., Hackensack, NJ, 2015.ISTP會(huì)議論文)

[8] Yong Zhang and Tianxin Cai, On products of consecutive arithmetic progressions, Journal of Number Theory 147 (2015), 287--299.SCI  4區(qū))

[9] Yong Zhang, Some observations on the Diophantine equation $f(x)f(y)=f(z)^2$, Colloquium Mathematicum 142(2) (2016), 275--284. SCI  4區(qū))

[10] Yong Zhang, Right triangle and parallelogram pairs with a common area and a common perimeter, Journal of Number Theory 164 (2016), 179--190. SCI  4區(qū))

[11] Yong Zhang and Zhongyan Shen, On the Diophantine system $f(z)=f(x)f(y)=f(u)f(v)$, Periodica Mathematica Hungarica 75(2) (2017), 295--301. SCI  4區(qū))

[12] Yong Zhang and Junyao Peng, Heron triangle and rhombus pairs with a common area and a common perimeter, Forum Geometricorum 17 (2017), 419--423. (非SCI

[13] Yong Zhang, Junyao Peng and Jiamian Wang, Integral triangles and trapezoids pairs with a common area and a common perimeter, Forum Geometricorum, 18 (2018), 371--380. (非SCI

[14] Yong Zhang, On the Diophantine equation $f(x)f(y)=f(z)^n$ involving Laurent polynomials, Colloquium Mathematicum 151(1) (2018), 111--122. SCI  4區(qū))

[15] Lirui Jia, Yong Zhang and Tianxin Cai, Some New Congruences Concerning Binomial Coefficients, Advance in Mathematics (China), 47(4) (2018), 525--542. (國(guó)內(nèi)核心期刊)

[16] Yong Zhang, On products of consecutive arithmetic progressions. II, Acta Mathematica Hungarica, 156(1) (2018), 240--254. SCI  4區(qū))

[17] Yong Zhang and Arman Shamsi Zargar, On the Diophantine equations $z^2=f(x)^2 \pm f(y)^2$ involving quartic polynomials, Periodica Mathematica Hungarica, 79(1) (2019), 25--31. SCI  4區(qū))

[18] Junyao Peng and Yong Zhang, Heron triangles with figurate number sides, Acta Mathematica Hungarica, 157(2) (2019), 478--488. SCI  4區(qū))

[19] Tianxin Cai, Liuquan Wang and Yong Zhang, Perfect numbers and Fibonacci primes (II), Integers: Electronic Journal of Combinatorial Number Theory, 19 (2019), A21: 1--10. (非SCI

[20] Yong Zhang and Arman Shamsi Zargar, On the Diophantine equation $f(x)f(y)=f(z)^n$ involving Laurent polynomials, II, Colloquium Mathematicum, 158(1) (2019), 119--126. SCI  4區(qū))

[21] Yong Zhang and Arman Shamsi Zargar, Integral triangles and cyclic quadrilateral pairs with a common area and a common perimeter, Forum Geometricorum, accepted (2019-2-8). (非SCI

[22] Yong Zhang and Deyi Chen, A Diophantine equation about harmonic mean, Periodica Mathematica Hungarica, 80(1) (2020), 138--144. SCI  4區(qū))

[23] Yong Zhang and Arman Shamsi Zargar, On the Diophantine equations $z^2=f(x)^2\pmf(y)^2$ involving Laurent polynomials, Functiones et Approximatio, 62(2) (2020), 187--201. (非SCI

[24] Yong Zhang and Zhongyan Shen, Arithmetic properties of polynomials, Periodica Mathematica Hungarica, 81(1) (2020), 134--148. SCI  4區(qū))

[25] Yangcheng Li and Yong Zhang, $\theta$-triangle and $\omega$-parallelogram pairs with areas and perimeters in certain proportions, The Rocky Mountain Journal of Mathematics, 50 (2020), 1059--1071. SCI  4區(qū))

[26] Yong Zhang and Arman Shamsi Zargar, Integral triangles and perpendicular quadrilateral pairs with a common area and a common perimeter, Functiones et Approximatio, Commentarii Mathematici, 63(2) (2020), 165--180. (非SCI

[27] Yong Zhang and Dan Gao, On certain Diophantine equations concerning the area of right triangles, Mathematica Slovaca, 71(1) (2021), 171--182. SCI  4區(qū))

[28] Yangcheng Li and Yong Zhang, Rational triangles pairs and cyclic quadrilaterals pairs with areas and perimeters in certain proportions, Functiones et Approximatio, Commentarii Mathematici, 65(1)(2021), 47--59. (非SCI

[29] Yong Zhang, On products of consecutive arithmetic progressions. III, Acta Mathematica Hungarica, 163(2) (2021), 407--428. SCI  4區(qū))

[30] 蔡天新, 張勇, 歐拉猜想及其變種, 數(shù)學(xué)進(jìn)展(中文), 50(3) (2021), 475--479.  (國(guó)內(nèi)核心期刊)

[31] Junyao Peng and Yong Zhang, On certain Diophantine equations involving triangular numbers, Integers, 21 (2021), A49: 1--11. (非SCI

[32] Tianxin Cai and Yong Zhang, A variety of Euler's sum of powers conjecture, Czechoslovak Mathematical Journal, accepted (2020-10-20), DOI: 10.21136/CMJ.2021.0210-20. SCI  4區(qū))

[33] Mei Jiang and Yong Zhang, Heron triangles with polynomial value sides, Acta Mathematica Hungarica, accepted (2021-6-6), DOI: 10.1007/s10474-021-01178-y.SCI  4區(qū))

[34] Yong Zhang and Qiongzhi Tang, On the integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(y)^2$, Periodica Mathematica Hungarica, accepted (2021-1-21). SCI  4區(qū))

[35] Yong Zhang, Qiongzhi Tang and Yunan Zhang, On the Diophantine equations $z^2=f(x)^2\pmf(y)^2$ involving Laurent polynomials. II, Miskolc Mathematical Notes, accepted (2021-10-18). SCI  4區(qū))

 

 

黄色在线网站wwwwww,亚洲一区免费观看,疯狂丑小鸭2,特黄毛片官网免费看