數(shù)學(xué)與統(tǒng)計(jì)學(xué)院研究生導(dǎo)師信息
一、電子照片
二、基本情況
姓名:周偉軍
性別:男
學(xué)歷學(xué)位:博士
職稱(chēng):教授
職務(wù):無(wú)
學(xué)術(shù)兼職:湖南省運(yùn)籌學(xué)會(huì)常務(wù)理事
研究方向:最優(yōu)化理論與方法
電子郵箱:754363899@qq.com
三、專(zhuān)業(yè)教學(xué)及教學(xué)成果
主要承擔(dān)《最優(yōu)化方法》、《高等數(shù)學(xué)》、《非線性方程組的數(shù)值解法》、《高等工程數(shù)學(xué)》、《高等數(shù)值分析》課程教學(xué);
四、研究方向及研究團(tuán)隊(duì)
主要從事最優(yōu)化領(lǐng)域科研工作;
五、科研成果
[1] 周偉軍(1/4),大型優(yōu)化問(wèn)題和非線性方程組的算法研究,湖南省人民政府,湖南省自然科學(xué)獎(jiǎng),二等獎(jiǎng),2019.2.27(周偉軍;戴志鋒;張麗;田博士)。
[2] W. Zhou, A class of line search type methods for nonsmooth convex regularized minimization, Soft Computing (2021), https://doi.org/10.1007/s00500-021-05672-x.
[3] W. Zhou, A projected PRP method for optimization with convex constraint, Pacific Journal of Optimization, 17 (2021) 47-55.
[4] W. Zhou, A globally convergent BFGS method for symmetric nonlinear equations, Journal of Industrial and Management Optimization (2021), doi:10.3934/jimo.2021020 .
[5] W. Zhou and L. Zhang, A modified Broyden-like quasi-Newton method for nonlinear equations, Journal of Computational and Applied Mathematics, 372 (2020) 112744.
[6] W. Zhou, A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems, Journal of Computational and Applied Mathematics, 367 (2020) 112454.
[7] W. Zhou and L. Zhang, A BFGS method using inexact gradient for general nonlinear equations, Pacific Journal of Optimization, to appear。
[8] W. Zhou and D. Li, On the Q-linear convergence rate of a class of methods for monotone nonlinear equations, Pacific Journal of Optimization, 14 (2018) 723-737.
[9] W. Zhou and D. Shen, Convergence properties of an iterative method for solving symmetric nonlinear equations, Journal of Optimization Theory and Applications, 164 (2015) 277-289.
[10] W. Zhou and F. Wang, A PRP-based residual method for large-scale monotone nonlinear equations, Applied Mathematics and Computation, 261 (2015) 1–7.
[11] W. Zhou, A globally and R-linearly convergent hybrid HS and PRP method and its inexact version with applications, Ukrainian Mathematical Journal, 67 (2015) 853-865.
[12] W. Zhou and D. Li, On the convergence properties of the unmodified PRP method with a non-descent line search, Optimization Methods and Software, 29(2014)484-496.
[13] W. Zhou and D. Shen, An inexact PRP conjugate gradient method for symmetric nonlinear equations, Numerical Functional Analysis and Optimization, 35 (2014) 370-388.
[14] X. Chen and W. Zhou, Convergence of the reweighted l_1 minimization algorithm for l_2-l_p minimization, Computational Optimization and Applications, 59 (2014) 47-61.
[15] W. Zhou, A short note on the global convergence of the unmodified PRP method, Optim. Lett. 7 (2013) 1367-1372.
[16] W. Zhou and X.J. Chen, Global convergence of a new hybrid Gauss-Newton structured BFGS methods for nonlinear least squares problems, SIAM Journal on Optimization, 20 (2010) 2422-2441.
[17] X.J. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization, SIAM Journal on Imaging Sciences, 3 (2010) 765-790.
[18] W. Zhou and D.H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Mathematics of Computation, 77 (2008) 2231-2240.
[19] L. Zhang, W. Zhou and D.H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numerische Mathematik, 104 (2006) 561-572.
[20] L. Zhang, W. Zhou and D.H. Li, A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence, IMA Journal of Numerical Analysis, 26 (2006) 629-640.