數(shù)學(xué)與統(tǒng)計(jì)學(xué)院研究生導(dǎo)師信息
一、電子照片
二、基本情況
姓名:姜英軍
性別:男
學(xué)歷學(xué)位:博士
職稱(chēng):教授
職務(wù):無(wú)
學(xué)術(shù)兼職:湖南省計(jì)算數(shù)學(xué)會(huì)常務(wù)理事
研究方向:微分方程數(shù)值解
電子郵箱:jiangyingjun@csust.edu.cn
三、專(zhuān)業(yè)教學(xué)及教學(xué)成果
主要承擔(dān)《Sobolev》、《有限元方法》、《非線性方程組的數(shù)值解法》、《高等工程數(shù)學(xué)》、《矩陣論》課程教學(xué)。
四、研究方向及研究團(tuán)隊(duì)
主要從事分?jǐn)?shù)階方程數(shù)值解領(lǐng)域科研工作。
五、科研成果
[1] Yingjun Jiang, xuejun Xu, A monotone finite volume method for time fractionalFokker-Planck equations, SCIENCE CHINA Mathematics, 2019(62), 783-794.
[2] Yingjun Jiang, xuejun Xu, Domain decomposition methods for space fractional partial differential e quations, Journal of Computational Physics, 2017(350), 573-589.
[3] Yingjun Jiang, xuejun Xu, Multigrid methods for space fractional partial differential equations, Journal of Computational Physics, 2015(302), 374–392.
[3] Yingjun Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker–Planck equation, Applied Mathematical Modelling, 2015(39), 1163–1171
[4] Yingjun Jiang, Jingtang Ma, Moving finite element methods for time fractional partial differential equations, SCIENCE CHINA Mathematics, 2013, Vol. 56 Issue (6): 1287-1300
[5] Yingjun Jiang, Jingtang Ma, Spectral collocation methods for Volterra-integro differential equations with noncompact kernels, Journal of Computational and Applied Mathematics, 244 (2013) 115–124