數(shù)學(xué)與統(tǒng)計(jì)學(xué)院研究生導(dǎo)師信息
一、電子照片
二、基本情況
姓名:李景
性別:女
學(xué)歷學(xué)位:博士研究生
職稱:教授
職務(wù):副院長
學(xué)術(shù)兼職:湖南省數(shù)學(xué)會理事、湖南省系統(tǒng)仿真學(xué)會理事
研究方向:偏微分方程
電子郵箱:lijingnew@126.com
三、專業(yè)教學(xué)及教學(xué)成果
主要承擔(dān)《線性代數(shù)》、《概率論與數(shù)理統(tǒng)計(jì)》、《Sobolev空間》、《數(shù)理方程》等課程教學(xué);
主要教學(xué)成果:
1.主持湖南省學(xué)位與研究生教學(xué)改革研究項(xiàng)目:“雙主體”背景下數(shù)學(xué)與統(tǒng)計(jì)學(xué)研究生培養(yǎng)模式改革的研究,2021.8-2023.7,省級。
2.主持本科教研教改項(xiàng)目:國外教學(xué)理念在大學(xué)數(shù)學(xué)課程教學(xué)中的應(yīng)用研究,2019.6-2021.5,校級。
3.主持校級研究生教育教學(xué)改革研究項(xiàng)目:“雙一流”背景下提高數(shù)學(xué)學(xué)科研究生培養(yǎng)質(zhì)量的改革實(shí)踐與理論研究,2019.9-2020.12,校級。
4.指導(dǎo)大學(xué)生參加Mathematical Contest in Modelling美國數(shù)學(xué)建模競賽獲H獎,2021年。
5.指導(dǎo)大學(xué)生創(chuàng)新訓(xùn)練項(xiàng)目:新冠病毒傳播分析及其對長沙市旅游業(yè)影響的數(shù)學(xué)模型研究,國家級,2020.6-2022.6。
6. 李景,王芳,大學(xué)數(shù)學(xué)課程教學(xué)的多元化教學(xué)模式改革,科教導(dǎo)刊,2020,vol.18, P195、P216.
7.李景,趙康,淺談如何提高數(shù)學(xué)學(xué)科研究生科研貢獻(xiàn)率,科教導(dǎo)刊,2020, vol.34, P212.
8.李景,如何提高數(shù)學(xué)學(xué)科研究生培養(yǎng)質(zhì)量,文淵,2020,P324.
9.李景,大學(xué)數(shù)學(xué)教學(xué)模式的改革與創(chuàng)新,科技信息,2012,P100.
四、研究方向及研究團(tuán)隊(duì)
主要從事應(yīng)用數(shù)學(xué)學(xué)科領(lǐng)域科研工作;
五、科研成果
1.主持國家自然科學(xué)基金數(shù)學(xué)天元項(xiàng)目,非線性發(fā)展方程的穩(wěn)定性理論研究,12126408,20萬元。
2.主持軍工項(xiàng)目,****分?jǐn)?shù)階微積分方程理論,100萬元,2022-2024。
3.主持湖南省教育廳重點(diǎn)項(xiàng)目,20A022,求解時(shí)間-空間分?jǐn)?shù)階Landau-Lifshitz-Bloch方程,2020/06-2023/06, 10萬元,在研,主持。
4.主持湖南省自然科學(xué)基金面上項(xiàng)目,2021JJ30697,分?jǐn)?shù)階Landau-Lifshitz-Bloch方程的定性分析及數(shù)值解2021.9-2023.12.,在研,主持。
5.主持湖南省自然科學(xué)基金青年項(xiàng)目,2018JJ3519,求解空間、時(shí)間分布階對流擴(kuò)散方程,2018/01-2020/08, 5萬元,已結(jié)題,主持。
6.主持湖南省教育廳優(yōu)秀青年項(xiàng)目,17B003,移動邊界上空間、時(shí)間分?jǐn)?shù)階對流擴(kuò)散方程的有限體積法,2017/09-2020/06, 7萬元,已結(jié)題,主持。
7.主持國家自然科學(xué)基金青年項(xiàng)目,11301040,多項(xiàng)時(shí)間-空間分?jǐn)?shù)階對流擴(kuò)散方程,2014/01-2016/12, 22萬元,已結(jié)題,主持。
8.主持國家自然科學(xué)基金專項(xiàng)基金數(shù)學(xué)天元項(xiàng)目,11226166,分?jǐn)?shù)階擴(kuò)散方程未知參數(shù)的求解,2013/01-2013/12, 3萬元,已結(jié)題,主持。
[1]Li J.,Li K., The defoucusing energy-supercritical nonlinear Schrodinger equation in high dimensions, SIAM J. Math. Anal., 2022, vol. 54, 3253--3274.
[2] Li J., Yang Y., Jiang Y., Feng L., Guo B., High-order numerical method for solving a space distributed-order time-fractional diffusion equation, Acta Mathematica Scientia, 2021,vol. 41B: 801-826.
[3] Li J., Guo B., Zeng L., Pei Y.,Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions,Discrete & Continuous Dynamical Systems - B, 2020, vol. 25, 1345-1360.
[4] Li J., Sladek J., Sladek V., Wen P., Hybrid meshless displacement discontinuity method (MDDM) in fracture mechanics: Static and dynamic, European Journal of Mechanics/A Solids, 2020,vol. 83, 104023.
[5] Chen C., Shen S., Dou F., Li J., The LMAPS for solving fourth-order PDEs with polynomial basis functions, Mathematics and Computers in Simulation, 2020, vol.177, 500-515.
[6] Chang W., Chen C., Liu X., Li J., Localized meshless methods based on polynomial basis functions for solving axisymmetric equations, Mathematics and Computers in Simulation, 2020, vol.177, 500-515.
[7] Li X., Liu Z., Li J.,Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces, Acta Mathematica Scientia, Series B, 2019, vol. 39B, 229-242.
[8] Liu F., Feng L., Anh V., Li J.,Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains,Computers and Mathematics with Applications, 2019, vol. 78, 1637-1650.
[9] Li X., Li Y., Liu Z., Li J.,Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions, Fractional Calculus and Applied Analysis, 2018, vol. 21, 1439-1470.
[10] Li J., Liu F., Feng L., Turner I., A novel finite volume method for the Riesz space distributed order advection-diffusion equation, Applied Mathematical Modelling, vol.46, 2017: 536-553.
[11] Li J, Liu J. Z., Korakianitis T., Wen P.H., Finite block method in fracture analysis with functionally graded materials, Engineering Analysis with Boundary Elements, vol.82, 2017: 57-67.
[12] Li J, Liu F., Feng L., Turner I., A novel finite volume method for the Riesz space distributed order diffusion equation, Computers and Mathematics with Applications, vol.74, 2017: 772-783.
[13] Li J., Guo B. L., Divergent Solution to the Nonlinear Schr¨odinger Equation with the Combined Power-Type Nonlinearities, Journal of Applied Analysis and Computation, vol.7, 2017: 249-263.
[14] Li J, Huang T., Yue J.H., Shi C., Wen P.H., Anti-plane fundamental solutions of Functionally graded materials and applications to fracture mechanics, Journal of Strain Analysis for Engineering Design, vol.52, 2017: 1-12.
[15] Li J., Shi C., Wen P.H., Numerical analysis for cracked functionally graded materials by Finite block method, Key Engineering Materials, vol.754, 2017.
[16] Feng L., Zhuang P., Liu F., Turner I., Li J, High-order numerical methods for the Riesz space fractional advection?dispersion equations, Computers and Mathematics with Applications, 2016, http://dx.doi.org/10.1016/j.camwa.2016.01.015
[17] Feng L., Zhuang P., Liu F., Turner I., Anh V., Li J., A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients, Computers and Mathematics with Applications, vol. 73, 2017, 1155-1171.
[18] Li J., Guo B. L., Parameter identification in fractional differential equations, Acta Matematica Scientia, vol. 33, 2013: 855-864.
[19] Li J., Guo B. L., The quasi-reversibility method to solve heat equations with mixed Boundary values, Acta Mathematica Sinica, English Series, vol. 29, 1617-1628.
[20] Xu Y. J., Li J., Liu Z. H., Controllability for a parabolic equation with a nonlinear term involving the state and the gradient. Journal of Applied Mathematics and Computing, vol. 29, 2009: 197-206.
[21] Li J., Xu Y. J., An inverse coefficient problem with nonlinear parabolic equation, Journal of Applied Mathematics and Computing, vol. 34, 2010: 195-206.
[22] Li J, Deng Y. J., Fast Compression Algorithms for Capsule Endoscope Images, 2nd International Congress on Image and Signal Processing, 2009: 212-215.
[23] Liu Z. H., Li J., Li Z. W., Regularization method with two parameters for nonlinear ill-posed problems, Science in China Series A: Mathematics, vol. 51, 2008: 70-78.
[24] Xu Y. J., Liu Z. H., Li J., Identification of nonlinearity in k-approximate periodic Parabolic equations, Nonlinear Analysis, vol. 71, 2009: 691-696.
[25] Li J., Wang F., Simplified Tikhonov regularization for two kinds of parabolic equations, Journal of Korean Mathematical Society, vol. 48, 2011: 311-327.
[26] Li J., Liu Z. H., Convergence rate analysis for parameter identification with semi-linear parabolic equation, Journal of inverse and ill-posed problems, vol. 17, 2009: 373-383.