報(bào)告承辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
報(bào)告內(nèi)容: 非線性基爾霍夫方程的全局不存在性
報(bào)告人姓名:閆衛(wèi)平
報(bào)告人所在單位:廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院
報(bào)告人職稱/職務(wù)及學(xué)術(shù)頭銜: 副教授
報(bào)告時(shí)間:2020年9月7日(星期一)下午3:30
報(bào)告地點(diǎn):云塘校區(qū)理科樓A-419
報(bào)告人簡(jiǎn)介:閆衛(wèi)平,廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院副教授,2011年博士畢業(yè)于吉林大學(xué),然后在北京大學(xué)國際數(shù)學(xué)研究中心從事博士后研究。研究方向?yàn)槲⒎址匠膛c動(dòng)力系統(tǒng)。在包括Calc. Var. PDE, J. Differential. Equations, J. Geometric. Analysis, Nonlinearity等期刊發(fā)表SCI論文25篇。
報(bào)告摘要:In this talk, we introduce the blow-up phenomenon of the three-dimensional nonlinear Kirchhoff equation with focusing power nonlinearities. The global non-existence for a kind of nonlinear Kirchhoff equations has been shown by Autuori, Pucci and Salvatori. We prove that this equation admits a blow-up solution which approaches the ODE blow-up profile in a backward light cone by overcoming the difficulty causing from the Kirchhoff operator.