國內(nèi)外研究現(xiàn)狀和發(fā)展動態(tài)
氨基酸是含氨基和羧基的一類有機化合物的統(tǒng)稱,是構(gòu)成蛋白質(zhì)大分子的基礎(chǔ)結(jié)構(gòu),幾乎一切生命活動都與之相關(guān)。氨基酸是生命代謝的物質(zhì)基礎(chǔ),是生物體內(nèi)不可缺少的營養(yǎng)成分,對生物大分子的活性及其生理功能起著極為重要的作用。例如: 賴氨酸能促進大腦發(fā)育,還能調(diào)節(jié)乳腺、黃體及卵巢,防止細胞退化; 甲硫氨酸有參與組成血紅蛋白、組織與血清,促進脾臟、胰臟及淋巴的功能; 如果人體缺乏任何一種必需氨基酸,就可能導致生理功能異常,影響抗體代謝的正常進行,最后導致疾病[1]。此外,氨基酸在生命體內(nèi)主要是以L-氨基酸存在,也含有部分的D-氨基酸,他們在生理學和病理學上的作用是不同的,那么對顯示不同手性氨基酸分子的識別就至關(guān)重要了[2],且氨基酸分子的檢測分析在醫(yī)藥、食品、飼料、化工等行業(yè)中都有重要應用[3]。因此,對氨基酸分子的分析方法的研究受到了世界各國的重視,對生物化學及整個生命科學研究具有重要意義,對于提高人類的生存生活質(zhì)量、人體健康和經(jīng)濟發(fā)展具有十分重要的意義。
檢測氨基酸分子的方法有很多,如高效離子交換色譜法[4]、氣相色譜法( GC) 和氣相色譜/質(zhì)譜聯(lián)用法( GC /MS) [5-8] 、高效液相色譜法[9-16]、液相色譜質(zhì)譜聯(lián)用( LC /MS) 法[17-19],毛細管電泳( Capillary electrophoresis,CE) [20-27] 、高效陰離子交換色譜-積分脈沖安培法( HPAEC-IPAD) [28-29],和電化學分析法 [15,16,17]等。然而,他們往往需要昂貴的精密儀器、復雜的樣品制備流程和熟練地操作人員,不能或不方便在實地實時使用。因此,現(xiàn)場環(huán)境檢測方法、移動實驗室和便攜式檢測儀器等概念近年來被許多研究人員提出[18,19]。其中,離子選擇性電極因其具有制作簡單、測試快速、成本低和檢測范圍寬等特點[20,21],對測定無機離子和含氮有機小分子有很好的應用前景。
膜電位拆分電極(Potentiometric Enantioselective MembraneElectrodes (EPMEs))是八九十年代新興的一種電化學分析新技術(shù),在結(jié)構(gòu)和性能上具有類似一般離子選擇性電極的特性。拆分綁定原理是EPME這種手性選擇器發(fā)展背后的原理,它是在一定條件下,分子之間通過非共價相互作用而自發(fā)組合形成的一種穩(wěn)定、結(jié)構(gòu)明確、具有特定的某種功能的超分子結(jié)構(gòu)或分子聚集體 [30]。能夠人為構(gòu)建出比較理想的修飾界面,為界面現(xiàn)象的研究提供了一種分子水平上能精確控制界面性質(zhì)的方法[31]。由于它對某些分子或離子具有高選擇性的識別功能,穩(wěn)定性也比較高。所以,這種方法對于研究含氮有機小分子有深遠的意義。Aboul-Enein等[30-33 ]用環(huán)糊精、麥芽糖糊精、喹啉、奎尼丁及其衍生物修飾碳糊電極的EPMEs電化學生物傳感器,用于藥物分析。Ozoemena等[34]利用環(huán)糊精及其衍生物修飾碳糊電極對L-脯氨酸的檢測,其檢測下限為0.1nmol/L;Raluca-Ioana等[35]利用富勒烯及其衍生物修飾碳糊電極,來對L-組氨酸的手性識別,其檢測限為2.2pmol/L。
據(jù)此,本文通過離子選擇性電位分析方法,利用新型功能超分子化合物的主客體識別與EPMEs新技術(shù)設(shè)計血清中氨基酸的快速傳感檢測敏感器件,建立含氮小分子監(jiān)測信息的無線傳輸與接收新方法,實現(xiàn)對氨基酸的自動檢測與無線探測。可望發(fā)展食品中氨基酸含量的超靈敏現(xiàn)場監(jiān)測和安全評估,實現(xiàn)保障人民群眾的生活質(zhì)量,提高我國分析檢測裝置在國內(nèi)外市場的競爭力,不僅在生物生長和食品的監(jiān)督方面以及生物化學的研究具有重要的基礎(chǔ)理論意義和實際應用價值,而且對生命科學的研究具有十分重要的現(xiàn)實意義。
參考文獻:
[1] 暴海霞, 戴新華. 氨基酸檢測方法的進展和現(xiàn)狀[J]. 化學試劑, 2013, 35(7).
[2] Aboul-Enein, Hassan Y., and I. W. Wainer. The impact of stereochemistry on drug development and use. John Wiley & Sons, 1997.
[3] 車蘭蘭,李衛(wèi)華,林勤保;氨基酸分析檢測方法的研究進展[J]. 氨基酸和生物資源, 2011, 33(2):39-42.
[4] Mooee S, Spaceman D H, Stein W H. Chromatography of amino acids on sulfonated polystyrene resins. An improved system.[J]. Analytical Chemistry, 1958, 30(7):1185-1190.
[5] Khuhawar M Y, Majidano S A. GC Analysis of Amino Acids Using Trifluoroacetylacetone and Ethyl Chloroformate as Derivatizing Reagents in Skin Samples of Psoriatic and Arsenicosis Patients[J]. Chromatographia, 2011, 73(7):701-708.
[6] Herbert, P., Barros, P., Ratola, N., & Alves, A. (2000). Hplc determination of amino acids in musts and port wine using opa/fmoc derivatives. Journal of Food Science, 65(7), 1130-1133.
[7] Duncan M W, Poljak A. Amino Acid analysis of peptides and proteins on the femtomole scale by gas chromatography/mass spectrometry.[J]. Analytical Chemistry, 1998, 70(5):890-896.
[8] Kawana, S., Nakagawa, K., Hasegawa, Y., & Yamaguchi, S. (2010). Simple and rapid analytical method for detection of amino acids in blood using blood spot on filter paper, fast-gc/ms and isotope dilution technique. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 878(30), 3113.
[9] Pereira, V., Pontes, M., Camara, J. S., & Marques, J. C. (2008). Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure. Journal of Chromatography A, 1189(1–2), 435-443.
[10] Fernández-F??Gares I, Rodr??Guez L C, González-Casado A. Effect of different matrices on physiological amino acids analysis by liquid chromatography: evaluation and correction of the matrix effect[J]. Journal of Chromatography B, 2004, 799(1):73-79.
[11] López-Cervantes J, Sánchez-Machado D I, Rosas-Rodríguez J A. Analysis of free amino acids in fermented shrimp waste by high-performance liquid chromatography.[J]. Journal of Chromatography A, 2006, 1105(1–2):106-110.
[12] Naval, M. V., Gómezserranillos, M. P., Carretero, M. E., & De, A. C. (2006). Value of high-performance liquid chromatographic analysis of amino acids in the determination of panax ginseng radix extract effect in cultured neurons. Journal of Chromatography A, 1121(2), 242-7.
[13] Bosch L, Alegría A, Farré R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods.[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2006, 831(1-2):176-183.
[14] Shi, T., Tang, T., Qian, K., Wang, F., Li, J., & Cao, Y. (2009). High-performance liquid chromatographic method for determination of amino acids by precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Analytica Chimica Acta, 654(2), 154-161.
[15] Davey J F, Ersser R S. Davey JF, Ersser RS: Amino acid analysis of physiological fluids by high-performance liquid chromatography with phenylisothiocyanate derivatization and comparison with ion-exchange chromatography[J]. Journal of Chromatography A, 1990, 528(1):9-23.
[16] Yan, D., Li, G., Xiao, X. H., Dong, X. P., & Li, Z. L. (2007). Direct determination of fourteen underivatized amino acids from whitmania pigra by using liquid chromatography-evaporative light scattering detection. Journal of Chromatography A, 1138(1), 301-304.
[17] Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens J, Morla A, Bouchu D. ESI-MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode[J]. Rapid Communications in Mass Spectrometry, 2003, 17(12):1297-311.
[18] Woolfitt, A. R., Solano, M. I., Williams, T. L., Pirkle, J. L., & Barr, J. R. (2009). Amino acid analysis of peptides using isobaric-tagged isotope dilution lc-ms/ms. Analytical Chemistry, 81(10), 3979.
[19] 黃翼飛,胡靜;液相色譜-電噴霧離子阱串聯(lián)質(zhì)譜同時分析煙草中的20種游離氨基酸[J]. 色譜, 2010, 28(6):615-622.
[20] Yu M, Dovichi N J. Attomole amino acid determination by capillary zone electrophoresis with thermooptical absorbance detection.[J]. Analytical Chemistry, 1989, 61(1):37-40.
[21] Coufal, P., Zuska, J., Van, d. G. T., Smith, V., & Gas, B. (2003). Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection. Electrophoresis, 24(4), 671.
[22] Chen S, Xu Y, Xu F, Feng X, Du W, Luo Q, Liu B. Separation and determination of amino acids by micellar electrokinetic chromatography coupling with novel multiphoton excited fluorescence detection[J]. Journal of Chromatography A, 2007, 1162(2):149-153.
[23] She, Z., Sun, Z., Wu, L., Wu, K., Sun, S., & Huang, Z. (2002). Rapid method for the determination of amino acids in serum by capillary electrophoresis. Journal of Chromatography A, 979(1–2), 227-232.
[24] Chan, K. C., Janini, G. M., Muschik, G. M., & Issaq, H. J. (1993). Laser-induced fluorescence detection of 9-fluorenylmethyl chloroformate derivatized amino acids in capillary electrophoresis. Journal of Chromatography A, 653(1), 93-7.
[25] Thongkhao-On, K., Kottegoda, S., Pulido, J. S., & Shippy, S. A. (2004). Determination of amino acids in rat vitreous perfusates by capillary electrophoresis. Electrophoresis, 25(17), 2978-84.
[26] 陳冰,李小戈,何萍等; 高效毛細管電泳-間接紫外吸收檢測法測定食品中的氨基酸[J]. 色譜,2004, 22(1):74-76.
[27] Zinellu A, Sotgia S, Pisanu E, Scanu B, Sanna M, Franca Usai M, Chessa R, Deiana L, Carru C. Quantification of neurotransmitter amino acids by capillary electrophoresis laser-induced fluorescence detection in biological fluids.[J]. Analytical and Bioanalytical Chemistry, 2010, 398(5):1973-8.
[28] Martens D A, Loeffelmann K L. Soil amino acid composition quantified by acid hydrolysis and anion chromatography-pulsed amperometry.[J]. Journal of Agricultural & Food Chemistry, 2003, 51(22):6521-6529.
[29]Yu H, Ding Y S, Mou S F. Some factors affecting separation and detection of amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.[J]. Journal of Chromatography A, 2003, 997(1-2):145-153.
[30] Hassan Y. Aboul-Enein, Raluca-Ioana Stefan. Enantioselective Sensors and Biosensors in the Analysis of Chiral Drugs[J]. Critical Reviews in Analytical Chemistry, 1998, 28(3):259-266.
[31] Stefana R I, van Staden J L, Aboulenein H Y. Design and use of electrochemical sensors in enantioselective high throughput screening of drugs. A minireview.[J]. Combinatorial Chemistry & High Throughput Screening, 2000, 3(6):445-54.
[32] Hassan Y. Aboul-Enein, Raluca-Ioana Stefan. Enantioselective Sensors and Biosensors in the Analysis of Chiral Drugs[J]. Critical Reviews in Analytical Chemistry, 1998, 28(3):259-266.
[33] Hassan Y. Aboul-Enein, Raluca-Ioana Stefan, Jacobus F. van Staden. Analysis of Several Angiotensin-Converting Enzyme Inhibitors using Potentiometric, Enantioselective Membrane Electrodes[J]. Analytical Letters, 1999, 32(4):623-632.
[34] Ozoemena KI, Stefan RI. Enantioselective potentiometric membrane electrodes based on alpha-, beta- and gamma-cyclodextrins as chiral selectors for the assay of L-proline.[J]. Talanta, 2005, 66(2):501-4.
[35] Stefan-van Staden R I, Lal B, Holo L. Enantioselective potentiometric membrane electrodes based on C(60) fullerene and its derivatives for the assay of l-Histidine.[J]. Talanta, 2007, 71(3):1434-7.
|