報(bào)告承辦單位: 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
報(bào)告題目: 基于諾伊曼邊界條件的擴(kuò)散蜱蟲(chóng)種群動(dòng)力學(xué)模型中的全局吸引性
報(bào)告內(nèi)容: Global attractivity on the diffusive tick population dynamics model incorporating Neumann boundary condition. This paper investigates a diffusive tick population dynamics model incorporating homogeneous Neumann boundary value and two distinctive constant delays. Firstly, we prove the global existence, positiveness and boundedness of solutions for the proposed system. Secondly, by employing some novel differential inequality analyses, maximum principle and with the help of the dynamic system method, a criterion is derived to ensure that all solutions are convergent to the positive steady state in the addressed model, which supplements and improves some existing results. Finally, some numerical examples are afforded to illustrate the effectiveness and feasibility of the theoretical findings.
報(bào)告人姓名:劉炳文
報(bào)告人所在單位: 嘉興學(xué)院
報(bào)告人職稱(chēng)/職務(wù)及學(xué)術(shù)頭銜:教授
報(bào)告時(shí)間: 2021年4月27日下午16:30
報(bào)告地點(diǎn): 云塘校區(qū)理科樓A-419
報(bào)告人簡(jiǎn)介:劉炳文教授,1994年畢業(yè)于湖南師范大學(xué)數(shù)學(xué)系,獲學(xué)士學(xué)位,2005年獲得湖南大學(xué)應(yīng)用數(shù)學(xué)系博士學(xué)位,2006年-2008年在復(fù)旦大學(xué)數(shù)學(xué)博士后流動(dòng)站完成博士后研究工作,2009年晉升教授。湖南省高校青年骨干教師,浙江省151人才工程人選,浙江省高校優(yōu)秀青年教師,美國(guó)《數(shù)學(xué)評(píng)論》評(píng)論員。主要從事時(shí)滯微分方程的定性與穩(wěn)定性理論及其應(yīng)用研究,主持并完成中國(guó)博士后科學(xué)基金項(xiàng)目1項(xiàng),參與完成國(guó)家自然科學(xué)基金項(xiàng)目2項(xiàng),主持土耳其國(guó)家科學(xué)技術(shù)委員會(huì)國(guó)際合作項(xiàng)目1項(xiàng),主持教育部重點(diǎn)項(xiàng)目、湖南省自然科學(xué)基金、浙江省自然科學(xué)基金等省部級(jí)項(xiàng)目6項(xiàng),先后在《Proceedings of the American Mathematical Society》等SCI學(xué)術(shù)期刊上發(fā)表學(xué)術(shù)論文80余篇,五篇論文入選ESI高被引論文,論文“Global exponential stability for BAM neural networks with time-varying delays in the leakage terms. Nonlinear Anal.Real World Appl. 14 (2013) 559–566.”入選2014 年中國(guó)百篇最具影響的國(guó)際學(xué)術(shù)論文。