報(bào)告承辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
報(bào)告內(nèi)容: Testing Serial Correlation and ARCH Effect of High-Dimensional Time-Series Data
報(bào)告人姓名: 凌仕卿
報(bào)告人所在單位: 香港科技大學(xué)數(shù)學(xué)系
報(bào)告人職稱/職務(wù)及學(xué)術(shù)頭銜: 教授、國(guó)際數(shù)理統(tǒng)計(jì)學(xué)會(huì)院士
報(bào)告時(shí)間: 2020年1月7日周二上午10:00
報(bào)告地點(diǎn): 理科樓A-419
報(bào)告人簡(jiǎn)介: 凌仕卿教授于1997年取得香港大學(xué)統(tǒng)計(jì)學(xué)博士學(xué)位,1997年至2000年西澳大學(xué)經(jīng)濟(jì)學(xué)系博士后,2000年至2006年香港科技大學(xué)數(shù)學(xué)系助理教授,2003年至2006年受聘于西澳大學(xué)經(jīng)濟(jì)學(xué)系和數(shù)學(xué)與統(tǒng)計(jì)系兼職副教授,2006年至2010年香港科技大學(xué)數(shù)學(xué)系副教授,2010年至今香港科技大學(xué)數(shù)學(xué)系教授。凌教授的主要研究方向?yàn)椋捍髽颖纠碚?、?jīng)驗(yàn)過(guò)程、非平穩(wěn)時(shí)間序列、非線性時(shí)間序列及計(jì)量經(jīng)濟(jì)學(xué)?,F(xiàn)為《Journal of Time Series Analysis》聯(lián)合編輯《Statistics & Probability Letters》、《Bernoulli》、《Electronic Journal of Statistics》、《Journal of the Japan Statistical Association》國(guó)際期刊的副主編。2003年和2013年分別榮獲澳大利亞和新西蘭MSS委員會(huì)頒發(fā)的Early Career Research Excellence Prize Biennial Medal,2005年當(dāng)選為國(guó)際統(tǒng)計(jì)學(xué)會(huì)會(huì)員;2007年榮獲計(jì)量經(jīng)濟(jì)學(xué)期刊(Econometric Theory)頒發(fā)的Multa Scripsit Award的獎(jiǎng)勵(lì),2013年當(dāng)選為澳大利亞和新西蘭MSS的Fellow。2015年當(dāng)選為ITTI的Inaugural Distinguished Fellow。2019年當(dāng)選為IMS Fellow。
報(bào)告摘要:This paper proposes several tests for detecting serial correlation and ARCH effect in high-dimensional data. The dimension of data $p=p(n)$ may go to infinity when the sample size $n\to\infty$. It is shown that the sample autocorrelations and the sample rank autocorrelations (Spearman's rank correlation) of the $L_{1}$-norm of data are asymptotically normal. Two portmanteau tests based, respectively, on the norm and its rank are shown to be asymptotically $\chi^{2}$-distributed, and the corresponding weighted portmanteau tests are shown to beasymptotically distributed as a linear combination of independent $\chi^{2}$ random variables. These tests are dimension-free, i.e. independent of $p$, and the norm rank-based portmanteau test and its weighted counterpart can be used for heavy-tailed time series. We further discuss two standardized norm-based tests. Simulation results show that the proposed test statistics have satisfactory sizes and are powerful even for the case of small $n$ and large $p$. We apply the tests to two real data sets.